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The Influence of Axial Forces on the

Collapse Loads of Frames

By E. T. OnatI and W. Pra'er 2

Abstract. In the limit analysis of frames the

influence of the axial forces is usually neglected be-

cause the limit moment of a section is not reduced

seriously by a moderate axial force. In an earlier

paper concerned with the limit analysis of arches 3 it

was shown that the presence of axial forces requires

the use of yield hinges that allow not only relative

rotation but also relative axial displacement of

adjacent cross sections. In the present paper a

different approach is discussed: the extensible hinges

on the center line arc replaced by ordinary hinges off

the center line. It is shown thatunwr certain assump-

tions, the location and the limit roment of an off-

center hinge are independent of the axial force. The

collapse load of a frame in which axial forces must

be considered is thus found to equal the collapse load

of a slIzhtly modified frame in which axial forces may

be neogected.

1 Frank B. Jewett Fellow in Appliiud Mathematics, Brown
University.

2 Professor of Applied I'Xclanics, Brown University.

3 E. T. Onat and W. Prager, "Limit analysis of arches",
J. ,och. Phys. Solids 1, 77 (1953).
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The concepts of limit analysis were developed in thne

twenties in connection with the design of continuous beamst

The application of limit analysis to the design of frames con-

stltutes a relatively recent advance 5 . There are several reasons

for this surprising time lag in 'be development of neighboring

fields of structural engineering. Firstly, even for continuous

beams experimental corroboration of the basic hypotheses was

6slow in forthcoming . Secondly, the simple techniques that were

adequate for continuous beams did not prove useful for complex

frames; only in the last few years have efficient techniques

been developed 7 . Finally, there were the difficulties created

by the presence of axial forces in frames. In addition to rais-

ing the question of structural stability, axial forces lower the

limit moments of the members in which they act.

As regards stability, both limit analysis and elastic

analysis are based on the assumption that all compression members

N. C. 1(st, "Pie Zachigkoit des Materials als Grundlage fuer
die Berechnung von Bruecken, fochbauten und aehnlichen Kon-
strukttonen aus Flusseisen", Fisenbau li, 425 (1920).

J J. F. Paker. "A review of recent investigations into the
behaviour ok steel frames in the plastic range", J. Inst.C.E. jl, 180 (1C49).

6 H. Maier-Leibnitz "Test results, their interpretation and
application", Prelim. Publ., 2nd Congress, Internat. Assoc.
Bridge Struct. Eng:., Perlin, 1936, p. 97.

7 P. S. Symonds and 13. G. Veal, "Recent progress in the plrstic
method ;f structural analysis", J. Franklin Inst., 252, 383,
4+69 (19%I).
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have sufficiently low slenderness ratios to ensure structural

stability. Only after the axial forces have been determined

under this assumption can the possibility of buckling be in-

vestigated, Of course, the results of the first analysis are

accepted only if the subsequent chock shows that there is no

danger of instability. Otherwise, the critical members must be

strengthened, and the analysis must be repeated.

The influence of the axial forces on the limit moments

can be treated by a similar iterative procedure. In the first

step of the analysis the limit moments in the absence of axial

forces are used. The axial forces found in the first stop are

then used to determine reduced limit moments for the second step,

and so on, T-,o or three steps are usually sufficient. Whereas

this method is suited for the numerical solution of concrete

problems, it does not yield general results.

Instead of retaining the concept of the yield hinge

and discusstng the influence of an axial force on the limit

moment in this hinge, consider the manner in which this concept

must be modified for members carrying bending and direct stresses.

For brevity, the following discussion will be restricted to

members that art symmetric with respect to the plane of bending.

Moreover, all elastic deformations will be neglected. This

amounts to treating the perfectly plastic materialas rigid where-

ever the stresses are below the yield limit.

The state of stress at a generic cross section is

specified by the bonding moment M and the axial force N. The

generalized strain rates corresponding to the generalized stresses
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MI N are the mate of bending ' and the rate of extens ion F , The

relative anrz;ar velocity of two neighboring cross sections is

Sdx, where d>-c is the infinitesimal distance between these

sections, and the relative axial velocity of their centroids is

e dx. The sign conventions for 1 and E are so adjusted to those

for M and N that

D dx = (M4 + NR)dx (1)

represents thUe rate at which mechanical ener-y is dissipated in

the plastic fLow of the material between the two cross sections.

The quantity D = M4 + BE will be called thc specific rate of

dissipation.

The neutral axis, which is normal to the plane of bcnd-

ing, divides tzho saction into two parts. If the plastic-rigid

member is to Reform at all, the axial stress must equal the

yield linit ira tension at all points in one part and the yield

limit in compr-ession at all points in the other part. With this

type of stress: distribution, each assumed position of the neutral

axis furnishes- a combination of M and N that will produce plastic

flow. Moreove-r, under tie usual assumption that material cross

sections rewai r plane during the bending process, the position

of the neutral axis specifies the ratio between ' and E,

Figirtre 1 shows a symrmetric section with the centroid C,

and two fully plastic stress distributions corresponding to

neighboring po nitions of the neutral axis. The compressive

stresses which must be added to the first distribution to obtain

the second one are represented by the shaded rectangle, The
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corresponding changes in bending moment and axial force are

dM = 20 by, (2)

dN = 12o0 b,

where a is the intensity of the yield stress in tension or0

compression, y the distance of the neutral axis from the centroid,

and b the width of the section at the distance y. While Eqs.

(2) have been derived for a specific situation, it is readily

seen that they have general validity provided the usual sign

conventions are made: the positive y axis points from the

centroid towards the top of the rection; a positive bending

moment produces tension at the bettom of the section, and a

positive axial force stresses the member in tension. Since £Y 4y*

Ecs. (2) yield

dM -(3)
dN ' "

A geometric interpretation of Eq. (3) is obtained as

follows. Let I40 be the limit moment in pure flexure and No the

limit force in simple tension. With

p. = M/Mo, ' = N/No0 , x = M o/No (4)

Eq. (3) can be written in the form

* (5)
dv X

Using ýx and v as rectangular Cartesian coordinates, represent

the fully plastic states of stress by the points of the "yield

curve' For a rectangular soction, the yield curve is found to

consist of the full-line parabolic arcs shown in FigS 2 (see the
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paper mentioned in Footnote 3), For an idealized I section with

indefinitely thin web and flanges, the yield curve is the broken-

line square in Fig. 2; for most structural sections the yield

curve falls between the full and the broken lines in Fig. 2.

Consider now the fully plastic state of stress represented by

the generic point P of the yield curve. If the type of plastic

flow which occurs under this state of stress is represented by

the "flow vector" with the components E and X 9 Eq. (5) shows

that this vector has the direction of the exterior normal of the

yield curve at P. On account of this normality the yield curve

specifies not only the fully plastic states of stress but also

the associated types of plastic flow. In other words, the yield

curve reproeents not only the yield condition but also the flow

rule.

In Fig. 3, let the full line represent the yield curve

which is supposed to be symmetric with respect to the v axis.

Since the axial forces in structural frames of conventional de-

sign play a role secondary to that of the bending moments, only

the central part of the yield curve corresponding to, say,

ivI < 0.5 i of importance. For mathetratical simplicity, this

part may be approximated by two straight line segments AB and

BC. This amounts to replacing the actual yield condition by

= 1 - clvi, (6)

where c is a constant. Since the ortho-onality between yield

curve and flow vector is an essential feature of the general
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theory of limit design8  the modified yield condition (6) implies

the following rule

lei = clxi, C?)

the sign of x and e agreeing with those of i and v , respectively.

The flow rule (7) can be given the following mechanical

interpretation. Consider a beam with an off-center hinge under

the actLon of a bending moment M and a compressive force V as

shown in Fiz. 4. If the distance between the hinge axis and the

centroidal axis of the beam eqvals cA 0/N0 , the rate of bending

in the hinge is accompanied by a rate of shortening c = cM'I'/No =0 0

cX in the centroidal fiber. A hinge at a fýxed distance from

the centrotdal axis therefore enforces the flow rule C?). In

view of the fact that i: in Fig. 4 is positive while F is negative,

the resulting moment of 1 and 1$ with respect to the hinge axis is

I MI + c --o IN~ I =M(II+ c IV I)= b
No00

by Eq. (6). Within the limits of validity of the approximate

yield condition (6) and the associated flow rule (7), the in-

fluence of axial forces on the collapse loads of frames can

therefore be evaluated by using off-center hinges that yield

under the constant moment Bo. Py tJis device the limit analysis

of a frame in which axial forces must be cconsidered can be

8 1.. Praer, "The general theory of limit design", Sectional

Address pre,'ented aL& the 8th International Congress of
Theoretical and Applied Mechanics, Istanbul, 1952, to
appear in the Proceedingr- of the Congress.
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reduced to the limit analysis of a frame in which axial forces

may be neglected.

For an idealized I section with the broken-line yield

square of Fi,. 2, the constant c equals unity. Moreover, for

such a beam MoA/° = H/2, where H is the depth of the beam. The

distance of the yield hinge from the centroidal axis therefore

equals H/2 in this case. For actual structural I sections this

distance is smaller than one half of the depth of the section.

The fact that the yield hinges used in the analysis in which

axial forces are neglected must only be slightly displaced to

include the influence of axial forccs affords a valuable intui-

tive insitht into the role of axial forces in the plastic col-

lapse of frames.
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